Formation of the simplest amide in molecular clouds: formamide and its derivatives in interstellar ice analogs upon VUV irradiation

Chuang, K.-J.,^{1,2*} Jäger, C.,¹ Krasnokutski, S.A.,¹ Fulvio, D.,¹ Henning, Th.³ ¹chuang@strw.leidenuniv.nl, Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany

² Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513,

2300RA Leiden, The Netherlands

³Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

Formamide has been astronomically identified in various star-forming regions and comets, suggesting the simplest amide might have a cold origin in interstellar molecular clouds before a star formed. Solid-state studies in the laboratory have proven the possible NH₂CHO formation in interstellar ice upon (non-)energetic processing at cryogenic temperatures.^{1,2,3} However, it is under debate whether one of the proposed formation mechanisms via radical-radical recombination reactions forming interstellar large organic molecules is still valid in an abundant H₂O environment.⁴ This work, for the first time, aims at verifying the formation of NH₂CHO and its chemical derivatives in CO:NH₃ ice mixtures with or without H₂O triggered by the cosmic ray induced secondary vacuum UV photons (mainly H₂ emission bands at ~160 nm). The goal of this study is to reveal a potential chemical network involving the three abundant molecules H₂O, CO, and NH₃ in interstellar ice and underpin the formation of complex organic molecules (COMs) in H₂O-rich ice mantles.

Three selected interstellar ice analogs, including H₂O:CO:NH₃ (10:5:1), CO:NH₃ (4:1), and CO:NH₃ (0.6:1), were studied in an ultra-high vacuum chamber at 10 K. Fourier-transform infrared spectroscopy (FTIR) was used to monitor in situ the initial and newly formed species as a function of photon fluence. The infrared spectral identifications are complementarily secured by a temperature-programmed desorption (TPD) experiment combined with a quadrupole mass spectrometer. The experimental results show that the UV photolysis of CO:NH₃ ice mixture mainly leads to the NH₂CHO formation with its chemical derivatives, including isocyanic acid (HNCO) and cyanate (OCN⁻). The formation kinetics suggest a strong dependency on the initial ice composition; the highest production yield of NH₂CHO is observed in the H₂O-rich ice mixture. The proposed reaction network (Fig. 1) and its astronomical relevance are further discussed.

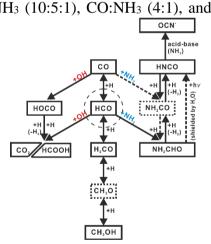


Figure 1. Proposed reaction diagram linking simple interstellar molecules at 10 K upon UV photons impact.

¹ Jones BM, Bennett CJ, Kaiser RI. Mechanistical studies on the production of formamide (H₂NCHO) within interstellar ice analogs. ApJ. 2011, 734(2), 78.

² Dulieu F, Nguyen T, Congiu E, et al. Efficient formation route of the prebiotic molecule formamide on interstellar dust grains. MNRAS Letter. 2019, 484(1), L119.

³ Haupa KA, Tarczay G, Lee YP. Hydrogen abstraction/addition tunneling reactions elucidate the interstellar H₂NCHO/HNCO ratio and H₂ formation. J. Am. Chem. Soc. 2019, 141(29), 11614.

⁴ Enrique-Romero J, Rimola A, Ceccarelli C, et al. Reactivity of HCO with CH₃ and NH₂ on water ice surfaces. a comprehensive accurate quantum chemistry study. ACS Earth and Space Chemistry. 2019, 3(10), 2158.