Photochemistry and spectroscopy of small, matrix-isolated organophosphorus molecules

Lawzer, A.,¹ Ganesan, E.,¹ Custer, T.,¹ Guillemin, J.-C.,² Kołos, R.,^{1*}

*presenter, rkolos@ichf.edu.pl

¹ Institute of Physical Chemistry, Polish Academy of Sciences, Poland

² Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, France

Based on our experience with spectroscopy and photochemistry of small nitriles, as well as nitrile-related isomers, ions, and radicals, we recently started to investigate their phosphorusbearing analogues. The first results pertaining to the photochemistry of simple phosphaalkynes (HCP, CH₃CP) and phosphines (CH₃PH₂, HCCPH₂) in rare gas solids will be presented. Dehydrogenation was the main process observed upon UV photolysis. It led to the spectroscopic characterisation of several previously unknown or poorly known species, namely H-CC-P¹ (triplet phosphinidene), CH₂=PH (phosphaethene), and CH₂=C=PH (phosphaallene). Matrix isolation of CP paved the way towards the hitherto uncharted quartet-doublet phosphorescence from that radical.

¹ A. Lawzer, A., Custer, T., Guillemin, J.-C., Kołos, R. An Efficient Photochemical Route Towards Triplet Ethynylphosphinidene, HCCP. *Angew. Chem. Int. Ed.* **2021**, *60*, 6400.