Vibronic Coupling in the NO₃ Radical: Analysis of Negative-Ion Photoelectron and Dispersed Fluorescence Spectra

John F. Stanton¹* ¹johnstanton@ufl.edu ²University of Florida, Gainesville, FL USA

The nitrate radical (NO₃) was first observed spectroscopically in 1880 and has been studied by infrared, electronic and negative-ion photodetachment spectroscopy. Interest in this radical is motivated by the fact that it is the most potent oxidizing agent in the nighttime atmosphere. Beyond that, NO₃ poses a great challenge to theory. For many years, a significant controversy surrounded its geometrical structure – did it or did it not have D_{3h} symmetry? – as various highlevel quantum chemical calculations gave conflicting answers to this question. In time, the difficulties with the ground ²A₂' electronic state of NO₃ have been traced to strong vibronic coupling with the second excited ²E' state, which greatly flattens the adiabatic potential of the former. The geometrical question ultimately comes down to ω_3 , the harmonic frequency that corresponds to the lowest e' vibrational mode of NO₃: an imaginary frequency implicates a lowering of symmetry from D_{3h} . A second question of more recent vintage surrounds the assignment of an infrared band at 1492 cm⁻¹ to the higher (v_3) degenerate stretching mode. This has been challenged both by vibronic coupling models and experiment, both of which point to reassignment of v_3 to a level near 1060 cm⁻¹. This talk provides an overview of the complexities posed by this radical and the various vibronic coupling mechanisms that are at play. It is shown that a vibronic Hamiltonian of the type advocated by Köppel, Domcke and Cederbaum provides excellent reproductions of the photoelectron and BX dispersed fluorescence spectrum of this species, suggesting that the low-lying vibronic level structure in the ground state is now wellestablished and secure.