Investigation of CH₃I and CH₃I-H₂O interactions by matrix-isolation FTIR spectroscopy

Houjeij, H.^{1,2}, Mascetti, J.^{1*}, Aupetit, C.¹, Cantrel, L.², , Taamalli, S.³, Louis, F.³ Gregoire A.C.², Sobanska S.¹,

¹hanaa.houjeij@u-bordeaux.fr, Institut des Sciences Moléculaires, Université de Bordeaux, France

²Institut de Radioprotection et de Sûreté Nucléaire, IRSN, France

³ PhysicoChimie des Processus de Combustion et de l'Atmosphère Laboratoire, Université de Lille, France

Iodomethane i.e. CH₃I (¹³¹I) can be found inside the containment of a pressurized water reactor (PWR) following a severe nuclear accident (Chernobyl, Fukushima...) and further it can be transported into the atmosphere in the case of a containment leakage¹. In the atmosphere, CH₃I may interact with atmospheric species (i.e. water, aerosols and iced particles), which may influence their environmental and sanitary impacts. The investigation of interaction processes at molecular level, between CH₃I and water and between CH₃I and aerosols is a first step to better understand how CH₃I reacts or not with atmospheric species. In this context, we have studied CH₃I-CH₃I, CH₃I-H₂O and CH₃I-amorphous ice as atmospheric proxies by the matrix-isolation FTIR technique supported by DFT calculations. Gaseous CH₃I (1000 ppm) diluted in Ar or pre-mixed samples of CH₃I/H₂O/Ar (3/6/3300) were deposited in a vacuum chamber on a NaCl window for 2 hours at 10K. Additionally, CH₃I has been deposited on amorphous ice at 25K for 2 hours. Subsequently, the deposited samples were annealed to 35 K. The gas-isolated samples were measured with an FTIR spectrometer. Moreover, to help in the identification of the formed products, the structure and vibrational spectra of $(CH_{3}I)_{1,2,3}$ and $(1,2)CH_{3}I-(1,2,3)H_{2}O$ were calculated using ω B97XD/aug-cc-pVTZ method².

The FTIR spectrum of CH₃I in Ar matrix clearly showed peaks for both CH₃I monomer and dimer as described in the literature³; additional trimer forms were also identified. The FTIR spectrum of CH₃I:H₂O mixtures showed peaks for CH₃I monomer, CH₃I dimer, CH₃I trimer, and various CH₃I-H₂O complexes that may explain the formation of CH₃I-H₂O aggregates in the atmosphere. It should be noted that F.Ito⁴ considered the bands observed for the complex are for 1CH₃I-1H₂O complexes which are fixed on the amorphous ice surface. The assignments of the observed clusters and complexes have been further confirmed by calculated wavenumbers and Gibbs energies. As expected, annealing enhanced the formation of species within the matrix. The complex formation on ice has been shown to be stable as the spectra of CH₃I/Ar deposition on ice is not affected by annealing.

Therefore, when gaseous CH₃I is released in the atmosphere, complexes of water are formed as aggregates or fixed on iced aerosols that can play a significant role in the cycling life of Iodine. Marix isolation technique is well adapted for investigating such physico-chemical processes. Further work to assess the influence of water on the photo-dissociation of CH₃I in the atmosphere is scheduled.

¹ Lebel, L. S., Dickson, R. S. & Glowa, G. A. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. *J. Environ. Radioact.* **151**, 82–93 (2016).

² Villard, A.; Khanniche, S.; Fortin, C.; Cantrel, L.; Černušák, I.; Louis, F. A theoretical study of the microhydration processes of iodine nitrogen oxides. *Int. J. Quantum Chem.*, **119**, *1–11* (2019).

³ Futami, Y., Kudoh, S., Ito, F., Nakanaga, T. & Nakata, M. Structures of methyl halide dimers in supersonic jets by matrixisolation infrared spectroscopy and quantum chemical calculations. J. Mol. Struct. **690**, 9–16 (2004).

⁴ Ito, F. Infrared studies of the CH3I-H2O complex and large CH3I clusters in Ar matrices. J. Mol. Struct. 1035, 54–60 (2013).