New insights in the low energy electron-driven reactivity of molecular cations

Mezei, J.Zs.,¹* Fazekas, G.,^{1,2} Boffelli, J.,³ Epée Epée, M.D.,⁴ Argoubi, F.,⁵ Ayouz, M.,⁶ Kokoouline, V.,⁷ Tennyson, J.,⁸ Schneider, I.F.³

*presenter

¹mezei.zsolt@atomki.hu, Institute for Nuclear Research (ATOMKI) Debrecen, Hungary

² University of Debrecen, Hungary

³LOMC, CNRS-University Le Havre Normandie, France

⁴ Dept. Of Physics, University of Douala, Cameroon

⁵ LSAMA, University of Tunis El Manar, Tunisia

⁶ LGPM, University Paris-Saclay, Orsay, France

⁷ Dept. of Physics, University of Centrale Florida, Orlando, USA

⁸ Dept. of Physics and Astronomy, University College London, UK

Electron-impact dissociative recombination, ro-vibrational (de)excitation and dissociative excitation of molecular cations:

$$AB^{+} + e^{-} \to AB^{*,**} \to \begin{cases} A + B \\ AB^{+*} + e^{-} \\ A + B^{+} + e^{-} \end{cases}$$

are in the heart of the molecular reactivity in the cold ionized media¹, being major charged particles destruction reactions and producing often atomic species in metastable states, inaccessible through optical excitations. They involve super-excited molecular states undergoing predissociation and autoionization, having thus strong resonant character. Consequently, they are subject to beyond-Born-Oppenheimer theoretical approximations, and often require rather quasi-diabatic than adiabatic representations of the molecular states. In addition, they involve particularly sophisticated methods for modelling the collisional dynamics, able to manage the superposition of many continua and infinite series of Rydberg states.

We use the Multichannel Quantum Defect Theory², capable to account the strong mixing between ionization and dissociative channels, open - direct mechanism - and closed - indirect mechanism, via capture into prominent Rydberg resonances³ correlating to the ground and excited ionic states, and the rotational effects. These features will be illustrated for several cations of high astrophysical⁴ and cold plasma⁵ physical relevance such as SH⁺ and N₂⁺, comparisons with other existing theoretical and experimental results being performed.

Advancement in the theoretical treatment - as the effect of the energy-dependence of the quantum defect on vibronic interactions for the benchmark cation H_2^+ , the isotopic effects for diatomic⁶ and polyatomic systems like H_2^+ and N_2H^+ , etc. - will be presented.

Research supported by the Normandy region, CNRS-PCMI, ANR Labex EMC³ and NKFIH-OTKA.

¹ Schneider, I. F.; Dulieu, O.; Robert, J. (editors), Eur. Phys. J. Web of Conf. 2015, 84.

² Jungen, Ch. (editor) Molecular Applications of Quantum Defect Theory, *IoP Publish. Bristol* 1996.

³ Mezei, J.Zs.; et al., ACS Earth and Space Chem. 2019, 3, 2376.

⁴ Kashinski D. O.; et al., J. Chem. Phys. 2017, 146, 204109.

⁵ Abdoulanziz A.; et al., J. Appl. Phys. 2021, 129, 053303.

⁶ Epée Epée M. D.; et al., MNRAS 2022, 512, 424.