
## A chemical link between methylamine (CH<sub>3</sub>NH<sub>2</sub>) and methylene imine (CH<sub>2</sub>NH): Infrared identification of aminomethyl radical (•CH<sub>2</sub>NH<sub>2</sub>) and implications for interstellar glycine formation

Joshi, P. R.,<sup>1</sup>\* Lee, Y.-P.<sup>1,2</sup>

\*presenter

<sup>1</sup>e-mail address: <u>prasad.nctu@gmail.com</u>, Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 30093, Taiwan <sup>2</sup> Centre for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan

Methylamine is considered as a potential precursor for the formation of interstellar amino acid through the reaction between aminomethyl radical (•CH<sub>2</sub>NH<sub>2</sub>) and HOCO. Despite of its importance in interstellar medium, direct evidence of the formation and spectral identification of •CH<sub>2</sub>NH<sub>2</sub> remains unreported. Taking advantage of unique properties associated with the *para*-hydrogen (p-H<sub>2</sub>) matrix, we performed the reaction H + CH<sub>3</sub>NH<sub>2</sub> in solid p-H<sub>2</sub> at 3.2 K. To generate H atoms, two methods were employed. In the first method, photolysis at 365 nm of a co-deposited mixture of CH<sub>3</sub>NH<sub>2</sub>/p-H<sub>2</sub> to produce Cl atoms and subsequent IR irradiation for promoting the Cl + H<sub>2</sub> ( $\upsilon = 1$ )  $\rightarrow$  H + HCl reaction were carried out. Upon UV/IR irradiation of the Cl<sub>2</sub> doped CH<sub>3</sub>NH<sub>2</sub>/p-H<sub>2</sub> matrix and after maintaining this matrix in darkness, we observed formations of •CH<sub>2</sub>NH<sub>2</sub> and CH<sub>2</sub>NH. The new IR spectrum of •CH<sub>2</sub>NH<sub>2</sub> clearly indicates that  $\cdot$ CH<sub>2</sub>NH<sub>2</sub> can be formed from the reaction H + CH<sub>3</sub>NH<sub>2</sub> in dark interstellar clouds. Isotopic experiments performed using CD<sub>3</sub>NH<sub>2</sub> produced CHD<sub>2</sub>NH<sub>2</sub>, in addition to •CD<sub>2</sub>NH<sub>2</sub> and CD<sub>2</sub>NH, confirming the occurrence of H addition to •CD<sub>2</sub>NH<sub>2</sub>. The products observed in this study are consistent with the potential-energy schematic predicted for  $H + CH_3NH_2$ reactions which reveal the feasibility of sequential H-abstraction and H-addition reactions. Moreover, a dual-cycle mechanism consisting of two consecutive H-abstraction and two Haddition steps chemically connects CH<sub>3</sub>NH<sub>2</sub> and CH<sub>2</sub>NH and might explain their quasiequilibrium in the interstellar medium. In the second method, H atoms were generated upon photolysis of a H<sub>2</sub>O<sub>2</sub>-doped CH<sub>3</sub>NH<sub>2</sub>/p-H<sub>2</sub> matrix to generate •OH first to facilitate the •OH + CH<sub>3</sub>NH<sub>2</sub> reaction; further reaction of  $\bullet$ OH + H<sub>2</sub>  $\rightarrow$  H<sub>2</sub>O + H might also trigger the H + CH<sub>3</sub>NH<sub>2</sub> reaction. In this method, significantly more  $\cdot$ CH<sub>2</sub>NH<sub>2</sub> was produced than in CH<sub>3</sub>NH<sub>2</sub>/Cl<sub>2</sub>/p-H<sub>2</sub> experiments; this observation is in line with a barrier predicted for  $\cdot OH + CH_3NH_2$  much smaller than that for  $H + CH_3NH_2$ . Both  $\bullet CH_2NH_2$  and  $CH_2NH$  observed herein are plausible starting materials for interstellar glycine in molecular clouds.

