Profound near-infrared luminescence of vanadyl phthalocyanine induced by charging at a molecular level

Sreekanta Debnath,¹* Karolina A. Haupa,¹ Sergei Lebedkin,² Dmitry Strelnikov,¹ and Manfred M. Kappes,^{1, 2}

*presenter

¹debnathsreekanta50@gmail.com, Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Germany

² Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany

Probing electrofluorochromism (EFC) at the molecular level remains a challenging task. The strongly charge state-dependent photoluminescence of vanadyl phthalocyanine has been studied and very recently been published.¹ We reported vibrationally-resolved absorption and laser-induced fluorescence (LIF) spectra of both the mass-selected neutral molecule (VOPc⁺, a stable radical) and its cation produced upon electron impact ionization (EI) isolated in solid Ne at 5 K. Ionization of the essentially non-emissive VOPc⁺ forms a high-spin diradical cation (VOPc⁺⁺⁺) which shows profound photoluminescence (PL) in the NIR range. This unique phenomenon is of potential interest towards NIR-emitting modern optoelectronic devices.

¹ Debnath, S.; Haupa, K. A.; Lebedkin, S.; Strelnikov, D.; Kappes, M. M. Triggering near-infrared luminescence of vanadyl phthalocyanine by charging. *Angew. Chem. Int. Ed.* **2022**, doi: 10.1002/anie.202201577.