S⁺ Implantation into Condensed CO₂: Relevance for Europa

Mifsud, D.V.,^{1,2}* Kaňuchová, Z.,³ Herczku, P.,² Juhász, Z.,², Kovács, S.T.S.,², Sulik, B.², Rahul, K.K.,² Rácz, R.,² Rajta, I.,², Vajda, I.,² Biri, S.,² Hailey, P.A.,¹ Traspas Muiña, A.,⁴ Ioppolo, S.,⁴ McCullough, R.W.,⁵ and Mason, N.J.¹ *presenter

⁵ Queen's University Belfast, United Kingdom

The implantation of reactive sulphur ions from the Jovian magnetosphere into the icy surface of Europa has been invoked as a possible source for the SO_2 observed on the water-dominated surface.¹ However, previous laboratory studies have shown that implantation of such ions into H₂O ices does not yield SO₂, instead forming H₂SO₄ hydrates. Moreover, implantations into CO₂ ices (a minor constituent of the Europan surface) have provided conflicting results. The possibility of an exogenic sulphur source for the SO₂ at the surface of Europa thus remains an open question.

We have therefore performed the implantation of 290 keV S⁺ ions into CO₂ ice at 20 and 70 K to assess whether such a mechanism may account for the presence of SO₂ at the surface of Europa. This work was performed using the Ice Chamber for Astrophysics-Astrochemistry (ICA) located at the Institute for Nuclear Research (Atomki) in Debrecen, Hungary which is directly connected to a 2 MV Tandetron particle accelerator.² Physical and chemical changes occurring in the ice associated with the implantation process were monitored *in situ* using Fourier transform mid-infrared transmission absorption spectroscopy.

Our results show that the implantation of S^+ ions into CO_2 ice at 20 K does indeed yield SO_2 as a product, with a reasonable formation rate of 0.58 ± 0.02 molecules per ion. However, at 70 K (a temperature more relevant to Europa), no such SO_2 ice could be detected. We have attributed this to the higher recombination rate of oxygen atoms to form O_2 which, at 70 K, then efficiently sublimates from the ice phase thus reducing the oxygen content of the ice.³ This is evidenced by the significantly reduced quantity of O_3 produced upon progressing from 20 to 70 K. Our results therefore suggest that the primary sulphur source for SO_2 on the surface of Europa is not exogenic, and that other surface processes (including geochemical ones) should instead be considered.

¹<u>duncanvmifsud@gmail.com</u>, University of Kent, United Kingdom

² Institute for Nuclear Research (Atomki), Hungary

³ Slovak Academy of Sciences, Slovakia

⁴ Queen Mary University of London, United Kingdom

¹ Mifsud, D.V.; Kaňuchová, Z.; Herczku, P.; *et al.* Sulphur ice astrochemistry: a review of laboratory studies. *Space Sci. Rev.* **2021**, *217*, 14.

 ² Herczku, P.; Mifsud, D.V.; Ioppolo, S.; *et al.* The Ice Chamber for Astrophysics-Astrochemistry (ICA): a new experimental facility for ion impact studies of astrophysical ice analogues. *Rev. Sci. Instrum.* 2021, *92*, 084501.
³ Sivaraman, B.; Jamieson, C.S.; Mason, N.J.; Kaiser, R.I. Temperature-dependent formation of ozone in sold oxygen by 5 keV electron irradiation and implications for Solar System ices. *Astrophys. J.* 2007, *669*, 1414.