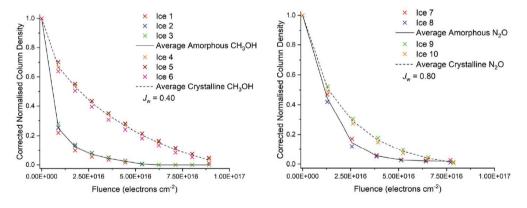
The Role of Solid Phase in the Radiation Astrochemistry of Ices


Mifsud, D.V.,^{1,2}* Hailey, P.A.,¹ Herczku, P.,² Kovács, S.T.S.,² Sulik, B.,² Juhász, Z.,² Kaňuchová, Z.,³ Ioppolo, S.,⁴ Paripás, B.,⁵ McCullough, R.W.,⁶ and Mason, N.J.¹

*presenter

¹<u>duncanvmifsud@gmail.com</u>, University of Kent, United Kingdom

- ² Institute for Nuclear Research (Atomki), Hungary
- ³ Slovak Academy of Sciences, Slovakia
- ⁴ Queen Mary University of London, United Kingdom
- ⁵ University of Miskolc, Hungary
- ⁶ Queen's University Belfast, United Kingdom

We have examined whether the solid phase of an irradiated astrochemical ice analogue plays any role in the physico-chemical evolution of the ice. Systematic studies have thus far largely focused upon the role of temperature in the radiation physics and chemistry of such ices.^{1,2} However, astrochemical ices are known to undergo cycles of thermally-induced crystallization and radiation-induced amorphization, thus motivating our research interest. The 2 keV electron irradiation of the amorphous and crystalline phases of a series of ices, including CH₃OH and N₂O, revealed that the decay rates of these ices are dependent upon the strength and extent of the intermolecular bonding network within the solid phase; with crystalline ices being more radio-resistant than amorphous ones.^{3,4} In the case of CH₃OH, the decay of the amorphous phase is significantly more rapid than that of the crystalline phase due to the strong and extensive hydrogen-bonding network present in the latter. Conversely, the decay of amorphous N₂O is only slightly more rapid than that of the crystalline one, since the molecular dipole interaction is only a weakly attractive potential.

Figure: 2 keV electron-induced decay rates for the amorphous and crystalline solid phases of CH3OH (*left*) and N2O (*right*) astrophysical ice analogues at 20 K.

astrophysical ice analogues. *Phys. Chem. Chem. Phys.* **2022**, *24*, 10974.

¹ Mifsud, D.V.; Kaňuchová, Z.; Ioppolo, S.; *et al.* Mid-IR and VUV spectroscopic characterization of the thermally processed and electron irradiated CO₂ astrophysical ice analogues. *J. Mol. Spectrosc.* **2022**, *385*, 111599.

 ² Sivaraman, B.; Jamieson, C.S.; Mason, N.J.; Kaiser, R.I. Temperature-dependent formation of ozone in sold oxygen by 5 keV electron irradiation and implications for Solar System ices. *Astrophys. J.* 2007, *669*, 1414.
³ Mifsud, D.V.; Hailey, P.A.; Herczku, P.; *et al.* Comparative electron irradiation of amorphous and crystalline

⁴ Mifsud, D.V.; Hailey, P.A.; Herczku, P.; *et al.* Laboratory experiments on the radiation astrochemistry of water ice phases. *Eur. Phys. J. D* **2022**, *76*, 87.