Infrared spectra of the diatomic Hg-O molecule in noble gas matrices

Tsegaw, Y.A.,¹* Andrews, L.,² Trindle, C.,² Cho, H.G., ¹ Beckers, H.,¹ Riedel, S.¹ *presenter

¹yetsedaw.tsegaw@fu-berlin.de, Institut für Chemie und Biochemie, Freie Universität Berlin, Germany

² Department of Chemistry, University of Virginia, USA

³ Department of Chemistry, Incheon National University, South Korea

Mercuric oxide forms stable solids, but the diatomic molecule Hg-O is not stable enough to survive detection in the gas phase. However, laser-ablation of Hg atoms from a dental amalgam target¹ into argon or neon containing about 0.3 % of ¹⁶O₂ or of ¹⁸O₂ during their condensation into a matrix at 4 K allows the formation of O atoms which react on annealing to make ozone and new IR absorptions in solid argon at 521.2 cm⁻¹ for Hg-¹⁶O or at 496.4 cm⁻¹ for Hg-¹⁸O with the oxygen isotopic frequency ratio 521.2/496.4 = 1.0500. Solid neon gives a 529.0 cm⁻¹ absorption with a small 7.8 blue shift. These observed frequencies have the isotopic shift predicted for Hg-O and are within the range of recent high-level frequency calculations for the Hg-O molecule.² Infrared spectra will also be presented here for the related molecular mercury superoxide and ozonide species.

¹ Andrews L.; Wang X.; Gong Y; Schlöder T.; Riedel S.; Franger M. J. Spectroscopic observation of a group 12 oxyfluoride: a matrix-isolation and quantum-chemical investigation of mercury oxyfluorides. *Angew. Chem. Int. Ed.* **2012**, *51*, 8235.

² Peterson K. A.; Shepler B. C.; Singleton J. M. The group 12 metal chalcogenides: an accurate multireference configuration interaction and coupled cluster study. *Mol. Phys.* **2007**, *105*, 1139.