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Ring expansion of fluorenylazirines
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PHOTOCHEMISTRY:

Reversible photo-switching from triplet nitrene to ketenimine

MOTIVATION:

Paramagnetism & Vibrational Circular Dichroism

MATRIX ISOLATION VCD:

Chiral molecules and reactive species in cold solid rare gases

SUMMARY & OUTLOOK: 

Towards MI-VCD studies on chiral reactive intermediates

MERTEN  LAB
Stereochemistry & Chiroptical Spectroscopy

MI-IR STUDIES:

Matrix effects & preliminary results
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The theory: VCD spectroscopy measures difference in absorbance of left- and right-circularly 

polarized light of vibrational transitions → tool for determination of absolute configurations in 
[1]combination with quantum-chemical calculations 

VCD = A  - ALCP RCP
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The method: combine VCD spectroscopy with matrix isolation

 its chiral derivative 2-azidofluoren-9-ol 1b

The model system: parent molecule 2-azidofluoren 1a and

The aim: extend scope of VCD structure elucidations beyond closed-shell systems by benchmarking 

organic molecules with different spin states

The challenge: open-shell systems (biradicals, carbenes, nitrenes) put theory on VCD implemented in 

all available computing software to test → approximations of underlying magnetic field perturbation 

(MFP) theory do not hold for high spin states

Ÿ combination of matrix isolation and vibrational circular 

dichroism spectroscopy (MI-VCD) enables characterization of 

chiral reactive intermediates

Ÿ irradiation at 450 nm triggers rearrangement 

to ketenimine species 4down and 4up via 

c o r r e s p o n d i n g  fl u o r e n y l a z i r i n e 

intermediates

Ÿ photolysis of azide 1 at 254 nm generates 

triplet nitrene 2 

Ÿ fluorenylazirine 3adown remains elusive 

during matrix isolation FTIR experiments → 

fast quantum mechanical tunnelling (QMT) 

Ÿ irradiation at 405 nm regenerates triplet 

nitrene 2

Ÿ photochemical cycle repeatable multiple 

times

Ÿ cf. ultrafast solution experiments by Phillips 
[2][3]

et al.  
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Ÿ QMT of 3adown to 4adown remains 

undetected → tunnelling rate exceeds 

time resolution of MI-FTIR experiments ?

Ÿ analysis of  k inet ic data assuming 
[4]dispersive behaviour:  rate constants of 

rearrangemen temperature-independent 

→ QMT

Ÿ estimate of tunnelling probabilities for 

both isomers by Kozuch‘s tunnelling 
[5]approximation  
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Ÿ no VCD spectrum recorded due to 

matrix effects of yet unknown nature

Ÿ e n a n t i o m e r i c a l l y  p u r e 

2-azidofluoren-9-ol 1b isolated in 

argon at 25 K on CsI window → 

sublimation at 70°C for 5 h under 

continuous gas flow

Ÿ irradiation at 254 nm generated 

triplet nitrene 2b
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Ÿ despite lack of thermal and photochemical energy: experimental difference spectrum (blue) showed 

ring-opening to ketenimine 4aup

Ÿ argon matrix containing benzazirine 3aup left in the dark at 3 K for 16 h, using a cut-off filter to block 

irradiation >2000 cm-¹ 

B3LYP-D3/def2TZVP

B3LYP-D3/def2TZVP
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Ÿ kinetic analysis of rearrangements 3bdown/3bup to 4bdown/4bup → further example of heavy-atom 

tunnelling?

Ÿ repeatable photochemical cycle of 2a established

Ÿ isomer-specific heavy-atom tunnelling in ring-expansion of fluorenylazirines 3adown/3aup observed

Ÿ matrix effects in MI-VCD studies on 1b/2b detected → optimization of deposition conditions required
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Reactive intermediates not limited to 

nitrenes → radical 5 and carbene 6 
promising targets for MI-VCD studies !
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Advantages of MI-VCD

Ÿ detailed analysis possible

Ÿ narrow bandwidth

Ÿ no solvent interference Ÿ optical quality of matrix

Challenges of MI-VCD

Ÿ conformational cooling

Ÿ analysis often complicated
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