

INVESTIGATION OF NITRENES & CHIRALITY IN CRYOGENIC MATRICES

J. F. Rowen, <u>Frederike Beyer</u>, T. Schleif, W. Sander, C. Merten

MOTIVATION:

Paramagnetism & Vibrational Circular Dichroism

The theory: VCD spectroscopy measures difference in absorbance of left- and right-circularly polarized light of vibrational transitions \rightarrow tool for determination of absolute configurations in

MATRIX ISOLATION VCD:

Chiral molecules and reactive species in cold solid rare gases

 combination of matrix isolation and vibrational circular dichroism spectroscopy (MI-VCD) enables characterization of abiral repative intermediates

RUB

combination with quantum-chemical calculations ^[1]

 $\mathbf{VCD} = \mathbf{A}_{\mathsf{LCP}} - \mathbf{A}_{\mathsf{RCP}}$

The challenge: open-shell systems (biradicals, carbenes, nitrenes) put theory on VCD implemented in all available computing software to test \rightarrow approximations of underlying magnetic field perturbation (MFP) theory do not hold for high spin states

The aim: extend scope of VCD structure elucidations beyond closed-shell systems by benchmarking organic molecules with different spin states

The method: combine VCD spectroscopy with matrix isolation

The model system: parent molecule 2-azidofluoren **1a** and its chiral derivative 2-azidofluoren-9-ol **1b**

PHOTOCHEMISTRY:

Reversible photo-switching from triplet nitrene to ketenimine

- photolysis of azide 1 at 254 nm generates triplet nitrene 2
- irradiation at 450 nm triggers rearrangement to ketenimine species 4down and 4up via corresponding fluorenylazirine intermediates
- fluorenylazirine **3a**down remains elusive during matrix isolation FTIR experiments → fast quantum mechanical tunnelling (QMT)

chiral reactive intermediates

Advantages of MI-VCD
no solvent interference
narrow bandwidth
detailed analysis possible
Challenges of MI-VCD
optical quality of matrix
conformational cooling
analysis often complicated

rix g cated high vacuum logotogo sample window Jorgen Jorgen

ISOMER-SPECIFIC HEAVY-ATOM TUNNELLING: Ring expansion of fluorenylazirines

- irradiation at 405 nm regenerates triplet nitrene 2
- photochemical cycle repeatable multiple times
- cf. ultrafast solution experiments by Phillips et al.^{[2][3]}
- et al.^{[2][3]}

MI-IR STUDIES:

Matrix effects & preliminary results

- enantiomerically pure 2-azidofluoren-9-ol **1b** isolated in argon at 25 K on CsI window → sublimation at 70°C for 5 h under continuous gas flow
- irradiation at 254 nm generated triplet nitrene **2b**
- no VCD spectrum recorded due to matrix effects of yet unknown nature

wavenumber / cm⁻¹

- argon matrix containing benzazirine **3a**up left in the dark at 3 K for 16 h, using a cut-off filter to block irradiation >2000 cm-¹
- despite lack of thermal and photochemical energy: experimental difference spectrum (blue) showed ring-opening to ketenimine **4a**up

- analysis of kinetic data assuming dispersive behaviour:^[4] rate constants of rearrangemen temperature-independent \rightarrow QMT
- QMT of **3a**down to **4a**down remains undetected → tunnelling rate exceeds time resolution of MI-FTIR experiments?
- estimate of tunnelling probabilities for both isomers by Kozuch's tunnelling approximation^[5]

 $P(E) = exp [-\pi^2 w \sqrt{2m(V_0 - E)/h}]$

SUMMARY & OUTLOOK:

Towards MI-VCD studies on chiral reactive intermediates

isomer-specific heavy-atom tunnelling in ring-expansion of fluorenylazirines **3a**down/**3a**up observed
repeatable photochemical cycle of **2a** established

ACKNOWLEDGMENTS

J. F. Rowen and F. Beyer gratefully acknowledge their (associative) membership in the GRK 2376 Confiment Controlled Chemistry which is funded by the Deutsche Forschungsgemeinschaft.

onfinement ontrolled hemistry GRK 2376

REFERENCES

- [1] C. Merten, T. P. Golub, N. M. Kreienborg, J. Org. Chem. 2019, 84, 8797.
- [2]S. Y. Ong, P. Zhu, Y. F. Poon, K. H. Leung, W.-H. Fang, D. L. Phillips, *Chem. Eur. J.* 2002, *8*, 2163.
- [3]S. Y. Ong, P. Zhu, K. H. Leung, D. L. Phillips, *Chem. Eur. J.* 2003, *9*, 1377.
- [4]W. Siebrand, T. A. Wildman, *Acc. Chem. Res.* 1986, *19*, 238.

[5]S. Kozuch, *PCCP* 2014, *16*, 7718.

matrix effects in MI-VCD studies on 1b/2b detected → optimization of deposition conditions required
kinetic analysis of rearrangements 3bdown/3bup to 4bdown/4bup → further example of heavy-atom tunnelling?

Reactive intermediates not limited to nitrenes \rightarrow radical **5** and carbene **6** promising targets for MI-VCD studies !

