## **Characteristics of Hydrogen Bonding between Chalcogen** Matthew H. V. Graneri, Duncan A. Wild and Allan J. McKinley and Pnictogen Species **School of Molecular Sciences**



THE UNIVERSITY OF **WESTERN** AUSTRALIA

Hydrogen bonding is one of the most prevalent types of intermolecular interactions in nature. While many O-H···B and O···H-A systems have been investigated, complexes involving non-oxygenated N-R<sub>3</sub> and sulfur-based molecules exclusively have been received less attention... We conducted matrix isolation Fourier transform infrared (MI-FTIR) spectroscopy studies using gas mixtures of argon, H<sub>2</sub>S and several nitrogen species in order to investigate these interactions.

(b)

## $H_2S \cdot NH_3$

Hydrogen sulfide ( $H_2S$ ) and ammonia ( $NH_3$ ) are emitted into the atmosphere through both natural and anthropogenic processes, yet their interaction is largely unexplored. This is particularly surprising, as NH<sub>4</sub>SH ice clouds are believed to be responsible for the colour of Jupiter's Great Red Spot,<sup>1</sup> which has not yet been fully explained.

0.25 —

## $H_2S \cdot Amines$

Clouds have a significant effect on global energy uptake in the atmosphere. The presence and behaviour of clouds is largely dependent on cloud condensation nuclei  $(CCN)^3$  – hydrophilic aggregates of atmospheric particles upon which water vapour can condense. CCN generally include sulfur-containing molecules, such as H<sub>2</sub>SO<sub>4</sub>.<sup>4</sup> It has recently been found that nitrogen-containing molecules, including NH<sub>3</sub>, methyl-, dimethyl-, and trimethylamine (MA, DMA, TMA, respectively) significantly enhance the ability of H<sub>2</sub>SO<sub>4</sub> to attract water molecules.<sup>5</sup> We looked at the interactions



**Figure 1:** MI-FTIR difference spectra of mixtures containing various isotopologues of H<sub>2</sub>S and NH<sub>3</sub> in solid argon. Spectra were recorded following deposition at 10 K. The spectra in (a) show the v<sub>1</sub> and  $v_3$  stretching regions of H<sub>2</sub>S, while the spectra in (b) show the  $v_2$  'umbrella' vibration region of  $NH_3$ .<sup>2</sup>

| Table               | <b>1:</b> Fre      | equency  | shifts   | (in cm <sup>-1</sup> | ) as a    | result c   | of comp  | lexation           | between |
|---------------------|--------------------|----------|----------|----------------------|-----------|------------|----------|--------------------|---------|
| H <sub>2</sub> S ar | nd NH <sub>3</sub> | with res | spect to | monom                | ner vibra | ational fi | requence | cies. <sup>2</sup> |         |

| Vibration             | $^{1}\text{H}_{2}\text{S} \cdot ^{14}\text{NH}_{3}$ | ${}^{1}\text{H}_{2}\text{S} \cdot {}^{15}\text{NH}_{3}$ | $D_2S^{-14}NH_3$ | $^{1}\text{H}_{2}\text{S} \cdot \text{ND}_{3}$ | $D_2S \cdot ND_3$ |
|-----------------------|-----------------------------------------------------|---------------------------------------------------------|------------------|------------------------------------------------|-------------------|
| $NH_3, V_2$           | + 31.8                                              | + 31.3                                                  | + 32.7           | + 23.9                                         | + 24.5            |
| $H_2S, v_2$           | + 15.1                                              | + 15.0                                                  | + 11.1           |                                                |                   |
| $NH_3$ , $V_4$ (sym)  | - 21.1                                              | -21.0                                                   |                  | - 8.1                                          | - 7.7             |
| $NH_3$ , $V_4$ (asym) | - 6.8                                               | - 6.8                                                   |                  |                                                |                   |

between these amines and  $H_2S$ , the sulfur analogue of  $H_2O$ , in order to explore the interactions between sulfur and nitrogen-containing species and create a 'series' of data which could be used to predict the binding of other such molecules.

The binding energy of the complex can be qualitatively estimated by the shift in the  $v_1$  vibration of  $H_2S$ . The trend determined from our spectra (DMA > TMA > MA) does not match that of the gas phase (GP) basicity data, nor does it match our calculated values (see Figure 3, Table 2). This may be due to interference from the Ar matrix. We are in the process of investigating this possibility.

New peaks appear at higher energy wavelengths to each H<sub>2</sub>S•amine peak (see Figure 3). They are present in every H<sub>2</sub>S•amine spectrum. Their origins are currently unknown.



Figure 3: MI-FTIR difference spectra of mixtures containing H<sub>2</sub>S and MA, DMA or TMA in solid argon. Spectra were recorded following deposition at 10 K.

Table 2: Comparison of data related to MA, DMA and TMA or their complexes with  $H_2S$ .

| $H_2S, v_1$                             | - 155.3 | - 156.0 | - 105.8 | - 160.3 | - 108.9 |
|-----------------------------------------|---------|---------|---------|---------|---------|
| $H_2S, v_1^*$                           | - 145.4 | -146.4  |         | - 148.9 |         |
| NH <sub>3</sub> , v <sub>1</sub>        | - 21.5  | - 22.1  | - 22.3  |         |         |
| $NH_3$ , $V_{3 (sym)}$                  | - 24.1  | - 24.3  | - 24.2  |         |         |
| NH <sub>3</sub> , v <sub>3 (asym)</sub> | - 13.4  | - 13.5  | - 13.9  |         |         |

Splitting of the  $v_1$  vibration of  ${}^1H_2S$  upon complexation indicates the presence of two different trapping sites; the absence of the splitting in the D<sub>2</sub>S/NH<sub>3</sub> spectra suggests that in one site (marked \*), the <sup>1</sup>H<sub>2</sub>S subunit undergoes hindered rotation, tunnelling through the Ar matrix, while, in the other site, the rotation is completely suppressed.<sup>2</sup>



**Figure 2:** The H<sub>2</sub>S•NH<sub>3</sub> complex, optimised at CCSD(T)/aug-cc-pV(T+d)Z level of theory.

| Complex                           | $\Delta v_1(H_2S)$ | Amine Basicity,<br>kJ mol <sup>-1</sup> (GP) <sup>6</sup> | Amine Basicity<br>(Aq., pK <sub>aH</sub> ) <sup>7</sup> | Binding Energy<br>(kJ mol <sup>-1</sup> )* |
|-----------------------------------|--------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|
| $^{1}H_{2}S \cdot NH_{3}$         | -155.3             | 819.0                                                     |                                                         | 7.3                                        |
| $^{1}H_{2}S \cdot MA$             | -263.8             | 864.5                                                     | 10.62                                                   | 12.4                                       |
| <sup>1</sup> H <sub>2</sub> S•DMA | -305.8             | 896.5                                                     | 10.64                                                   | 14.6                                       |
| $^{1}H_{2}S \bullet TMA$          | -277.8             | 918.1                                                     | 9.76                                                    | 15.4                                       |

\*CCSD(T)-RI/F12/AVQZ-F12//B97M-D4/AVQZ



Figure 4: Most tightly bound conformers calculated for the H<sub>2</sub>S•amine complexes. The structure in (a) is of the  $H_2S$ ·MA complex, calculated at CCSD(T)/aug-cc-pV(T+d)Z level of theory. The structures in (b) and (c) are of the H<sub>2</sub>S•DMA and H<sub>2</sub>S•TMA complexes, respectively, calculated at B97M-D4/aug-cc-pV(Q+d)Z level of theory.

## $H_2O \cdot PH_3$

PH<sub>3</sub> is considered a biosignature gas in the search for extra-terrestrial life in anoxic environments.<sup>8</sup> Surprisingly, the 1:1  $H_2O$ •PH<sub>3</sub> complex had not been investigated, despite the importance of  $H_2O$  for the propagation of life. We sought to rectify this using MI-FTIR to identify the complex.

A binding energy of 5.1 kJ mol<sup>-1</sup> was calculated at  $CCSD(T)/CBS_{T,Q,5}$  level of theory; much weaker than its S/N analogue,  $H_2$ S•N $H_3$ , with 8.6 kJ mol<sup>-1</sup> at the same level of theory.<sup>2</sup>



isotopologues of  $H_2O$  and  $PH_3$  in Ar matrices.

1. M. J. Loeffler, R. L. Hudson, N. J. Chanover and A. A. Simon, *Icarus*, 2016, 271, 265-268.

2. M. H. V. Graneri, D. A. Wild and A. J. McKinley, J. Mol. Spectrosc., 2021, 378, 111440.

3. B. A. Albrecht, Science, 1989, 245, 1227-1230.

4. M. Kulmala, T. Petäjä, M. Ehn, J. Thornton, M. Sipilä, D. R. Worsnop and V.-M. Kerminen, Annu. Rev. Phys. Chem., 2014, 65, 21-37.

5. T. Kurtén, V. Loukonen, H. Vehkamäki and M. Kulmala, Atmos. Chem. Phys., 2008, 8, 4095-4103.

6. E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 413-656.

7. S. Tshepelevitsh, A. Kütt, M. Lõkov, I. Kaljurand, J. Saame, A. Heering, P. G. Plieger, R. Vianello and I. Leito, Eur. J. Org. Chem., 2019, 2019, 6735-6748.

8. C. Sousa-Silva, S. Seager, S. Ranjan, J. J. Petkowski, Z. Zhan, R. Hu and W. Bains, Astrobiology, 2020, 20, 235-268.

**Figure 5:** The  $H_2O \cdot PH_3$ complex, optimised at CCSD(T)/aug-cc-pV(T+D)Z level of theory.