H-Atom-Abstraction and H-Atom-Addition Reactions of Fulminic Acid (HCNO) and Formaldoxime (H₂CNOH) in Solid para-H₂ * Keresztes, B.,^{1,2} Góbi, S.,¹ Ragupathy, G.,¹ Csonka, I.P.,¹ Tarczay, G.^{1,2} * ¹ MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Hungary

² Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, Hungary

1. Introduction

One of the central questions of astrochemistry is how the most abundant molecule of the interstellar medium (ISM), H_2 , is formed in dense molecular clouds. According to recent theoretical studies, it is possible that H_2 is generated on the surface of interstellar grains by catalytic cycles. H atoms can react with particles in H-addition and H-abstraction processes. In the case of several successive H atom reactions, catalytic cycles can occur [1].

The aim of our research work was to investigate the reactions between H atom and astrochemically interesting molecules, fulminic acid (HCNO) and formaldoxime (H₂CNOH).

2. Methods

- Experiments were carried out in solid *para*-H₂ by the VIZSLA setup [2].
- HCNO was prepared from 1,2,5-oxadiazole by *in-situ* λ = 220 nm UV photolysis [3]; *trans*-H₂CNOH was prepared from its trimer complex with HCl by heating at *T* = 39.5 °C.
- The sample (i.e. 1,2,5-oxadiazole or *trans*-H₂CNOH) with Cl₂ were deposited in *para*-H₂ matrix at T = 3.1 K (precursor : Cl₂ : *para*-H₂ ≈ 1:3:2300) onto a gold-coated silver substrate.
- H atoms were generated by successive λ = 365 nm UV and λ = 2217 nm NIR irradiation [4].

- Secondary photolysis were carried out at λ = 390, 330, 300, 270, 240 and 216 nm.
- Irradiations were carried out by a Nd-YAG:OPO system.
- Chemical processes were followed by IR spectroscopy, using a Bruker Invenio FT-IR spectrometer in reflection-absorption mode.
- Assignments were based on comparison with computed vibrational frequencies and intensities (anharmonic B3LYP/cc-pVTZ), and were confirmed by temporal changes of relative peak intensities.

4.a The observed chemical changes – Experiment 1: HCNO + H

• HCNO + H atom reaction led to the formation of H_2 CNO and *trans*-HCNOH.

- HCNO and H₂CNOH can react with H atoms at 3.1 K, the same reactions might also occur in the dense molecular clouds.
- HCNO and H_2 CNOH are chemically linked, the quasi-equilibrium is shifted towards HCNO. This may explain the non-detection of H_2 CNOH in the ISM.
- The IR spectra of several small molecules were recorded in para-H₂. In the future, these laboratory spectra might help to identify these particles in the ISM.

Reactions between HCNO and H₂CNOH. The red and grey arrows show the reactions observed and not observed, respectively, upon the experiments.

References

[1] Vidali, G., Chemical Reviews 2013, 12, 8762.

[2] Bazsó G., Csonka I. P., Góbi S., Tarczay Gy., Instrumentation and Methods for Astrophysics, 2021, 92, 12, 124104.
[3] Keresztes B., Csonka I. P., Lajgút Gy. Gy., Bazsó G., Tarczay Gy., Journal of Molecular Structure, 2020, 1219, 128535.

[4] Bahou, M., Das, P., Lee, Y.-F., Wub, Y.-J., Lee, Y.-P., Phys. Chem. Chem. Phys., 2014, 16, 2200.

Supported by the ÚNKP-21-2 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

