

AGENCE NATIONALE DE LA RECHERCHE

H₂O:CO Interstellar Ice Analogues: an EPR Coupled to IR and QMS-TPD Study

Radical and iCOM Formation From VUV Photolysis of

<u>Y. Layssac¹</u>, A. Gutiérrez-Quintanilla¹, S. Henkel², Y.A. Tsegaw², D. Grote², W. Sander², T. Chiavassa¹, and F. Duvernay¹

¹ Aix-Marseille Université, Laboratoire PIIM (UMR 7345), Team ASTRO, Saint Jérôme, Ave. Escadrille Normandie Niemen, 13013 Marseille, France ² Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany

Introduction

- COM formation mechanisms are not well established and could take place either in gas or solid phase. [1,2]
- We developped an unique experimental procedure allowing the detection of intermediary (radical) species and stable products in the same experimental conditions. [3]

Bochum EPR experiment

- This work aims to apply this methodology to interstellar ice analogues with the astro relevant CO/H_2O system.
- We propose solid phase formation mechanisms of some carboxilic acids under VUV photolysis at Lyman- α wavelength.

Experimental procedure

• $CO/H_2O = 1/1$ deposition at 4 K (Bochum) or 12 K (*RING*). Photolysis (121.6 nm) and EPR/IR acquisition at 4 K/12 K. QMS-TPD acquisition (EI, 70 eV) between 160 and 300 K.

Glyoxilic acid

900 800

(8) Oxalic acid

IR detection of

radicals and COMs

HO[•]CO & H[•]CO.

products [4]:

Strong hints:

acids.

Not conclusive:

CO hydrogenation

 $CO \xrightarrow{2H} H_2CO \xrightarrow{2H} CH_3OH$

Formic and glycolic acids.

GA, EG, oxalic and glyoxilic

> Two detectable radicals:

Conclusion

- \checkmark Detection of at least four radical intermediary species from CO/H₂O VUV photolysis: H[•], H[•]CO, [•]CH₂OH, and HO[•]CO.
- Two carboxilic acids can be formed in solid state by radical recombination: $H^{\bullet} + HO^{\bullet}CO \rightarrow HCOOH (FA) \& {}^{\bullet}CH_{2}OH + HO^{\bullet}CO \rightarrow HOCH_{2}COOH (glycolic acid).$

 \checkmark Glyoxilic & oxalic acids could also be formed but more experiments are needed.

✓ Formic acid has been detected in the ISM [5] and interstellar ices [6]. Glycolic acid has not (yet) been observed, let's search for this molecule \odot .

References

[1] K.-J. Chuang et al., MNRAS. 2017, 467, 2552. [2] D. Skouteris et al., ApJ. 2018, 854, 135. [3] A. Gutiérrez-Quintanilla et al., MNRAS. 2021. [4] T. Hama and N. Watanabe, Chem. Rev. 2013, 113, 8783. [5] B. Zuckerman et al., ApJ. 1971, 163, L41. [6] A. C. A. Boogert et al., ApJ. 2008, 678 (2), 985.

