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• The implantation of energetic S+ ions into pure CO2 ices was tested as a formation 

route for SO2.

• At 20 K, mid-infrared spectral signatures of SO2 were clearly observed as a result 

of ion implantation.

• At 70 K, no evidence was found for the formation of SO2.

• S+ ion implantation is likely not the source of SO2 on the surfaces of Europa and 

the other icy Galilean moons.

Abstract

Experimental Methodology

SO2 on Europa: An Uncertain Sulfur Source

• SO2 on Europa is predominantly found on the trailing hemisphere arranged in a 

‘bulls-eye’ pattern. This is indicative of a magnetospheric sulfur source.[1]

• Laboratory studies have failed to detect SO2 after sulfur ion implantation into 

H2O ices, which dominate the surface of Europa. Instead, H2SO4 is formed.[2]

• Implantations into other Europan surface materials, such as CO2 ice, have been 

largely inconclusive and were performed at 20 K: a temperature which is too low 

to simulate Europa.[3,4]

• We have therefore performed high fluence (~1016 ions cm-2) 290 keV S+ ion 

implantations into condensed CO2 at 20 and 70 K to resolve this issue.

• Experiments were performed using the Ice Chamber for Astrophysics-

Astrochemistry (ICA) set-up in Debrecen, Hungary.[5,6]

• The chamber base pressure is ~10-9 mbar.

• A thick (~3 μm) CO2 ice was prepared via background deposition at 20 and 70 K.

• 290 keV S+ ions (current: 120 nA) were implanted into the ice until a fluence of 

~1016 ions cm-2 was achieved.

• Fresh ice layers were continually deposited to compensate for sputtered material.

• Physico-chemical changes in the ice were monitored in situ using FT-IR 

transmission absorption spectroscopy (range: 4000-650 cm-1; resolution = 1 cm-1).

Precautionary Experiments

• Spectra of unirradiated CO2:SO2 ice mixtures were collected to determine the 

positions of the SO2 absorption bands.

• Since the region in which SO2 ice presents absorption bands also hosts several 

other absorption bands, 300 keV He+ ions were also implanted into CO2 ice.

• In this case, all bands associated with the irradiative processing of the ice will still 

be present, except those that incorporate sulfur.
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Fig. 1: The ICA set-up. Left: Top-view schematic 

of chamber. Above: Sample holder and ZnSe

deposition substrates. Below: Ion beam guiding 

and monitoring system.

Results, Interpretation, and Conclusion

At 20 K:

• Both the symmetric and asymmetric SO2 stretching bands were detected after S+

ion implantation into CO2 at 20 K.

• The formation rate was calculated to be (0.48 ± 0.01) SO2 molecules per ion.

At 70 K:

• No SO2 bands were detected after implantation at 70 K, a temperature more 

relevant to the surface of Europa.

• Oxygen atom combination to yield O2 is more efficient at higher temperatures.

• At 70 K, O2 efficiently sublimates from the ice into the gas phase, leaving fewer 

oxygen atoms available for SO2 formation.

• S+ ion implantation is likely not an efficient mechanism to account for the SO2

observed on Europa and the other Galilean satellites.

• Endogenic sources of sulfur should be considered instead (e.g., irradiation of 

hydrated H2SO4 surface ices).[7]

Fig. 2 (above): Graphical representation 

of the process simulated in this study.

Fig. 3 (left): FT-IR spectra after S+ ion 

implantation into CO2 ice at 20 (left) and 

70 K (right).
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